

B.C. Hydro British Columbia, Canada

BChydro 🖸

Case Study

Key Facts:

 Industry:
 Utilities

 Problem:
 Integrating and migrating data from multiple formats into GE Smallworld GIS.

 Solutions:
 FME®

The Organization

BC Hydro is the predominant supplier of electrical services in the province of British Columbia serving more than 1.5 million customers. BC Hydro is currently implementing an Enterprise Geographic Information System (EGIS) based on the GE Smallworld[™] GIS. The organization also uses MicroStation[®]. Both GE Smallworld GIS and MicroStation run on Windows NT.

The Challenge

Contractors provide data in MicroStation DGN format. After verification and validation procedures have been performed, the data needs to be merged with provincial maps that are in SAIF (Spatial Archive and Interchange Format). Ultimately, all this data needs to be imported into the GE Smallworld GIS.

The complexity of the BC Hydro EGIS data model (over 230 feature types from the As-Constructed Mapping compilation), and the large number of feature types that are imported from the GDBC TRIM data (over 300 additional feature types) created a key problem to be resolved. All these features had to be available in MicroStation Design, Carl-Ziess PHOCUS PHODAT and GE Smallworld formats.

The Solution

BC Hydro chose FME as a one-stop solution for data verification, data translation, data merging, and the data import into GE Smallworld GIS. View a data flow diagram of the solution. Please refer to **Figure 1**.

Data Verification: FME validates mapping specifications. This process ensures all contractors' data meets the BC Hydro Specifications for Data Capture. FME reads the MicroStation Design files supplied by the photogrammetric contractor, checks that all features match the BC Hydro EGIS As-Constructed Mapping Program specification, and then writes out a new DGN file. Any features that do not meet the design specification are saved on DGN Level 63 and a report is generated indicating where the error occurred. To save time, some contractors run FME themselves to check their photgrammetric compilation work prior to submission to BC Hydro.

Data Translation: FME translates data from MicroStation DGN format into the PHOCUS format for use in the Carl-Ziess PHOCUS PHODAT system. This allows comparison of the 3D vector data with stereo-pair aerial photographs. All significant features are checked to ensure they have accurate elevations. FME then converts the PHOCUS PHODAT back to DGN for data merging.

Data Merging: FME converts the provincial maps (TRIM data) from their native SAIF format to DGN files. As a separate process, using MicroStation, the TRIM data is merged with the As-Constructed Mapping Data. Since the As-Constructed Mapping Surveys are more accurate than the available TRIM data, the TRIM is clipped out from the area or strip-covered by the As-Constructed Survey, and the remaining TRIM features are tied in to match.

Data Import: As a final step, FME imports the merged DGN files into the BC Hydro EGIS (GE Smallworld format). An FME mapping file controls exactly how FME performs the final import. To simplify maintenance of the features, the entire data schema for all three formats is summarized in a single spreadsheet (refer to Figure 2). This defines the geometry type, DGN display attribution, PHOCUS schema and the complete GE Smallworld Landbase schema. Adding or changing an existing GE Smallworld object, for example, requires only a new entry in the spreadsheet and then the new object is available in the two other supported formats, without requiring any changes to the FME mapping files themselves. This greatly simplifies maintenance of the EGIS data import system.

Learn More

To find out how FME can help address your data interoperability challenge, or to download a free evaluation copy of FME, visit www.safe.com

Description	LV.	51	w1		Craupho Craup	Ain Group	гноналагу	Scale a Cell	Scale y Cell	Cell rame	1eur Pars	leat Sale	ы	hii Calaar	iğatı oltar		Photos Class	Photos Object
PRE Allvibule Name	Leve.	Siy/e	iV eg	P Calau	Emph: E	r Engelier	Cran/veG.outSi	20.00	(Scale)	r CellMame	featPo	(featSA	0.PM	/NI/Dala	Geametry	DR/M	Photos un	Phone Units
AIRSTRIP.AREA	1		a (3 3	1	1	PRIMARY								enañe	1	2	302
AIRSTRIP, NAME	1		a (19	1	1	OPTIONAL					1			ext.	2	2	302
BARN	1		a (1 a	2	2	PRIMARY						Y	a	90 H	3	3	703
EARN-ROOF-LINE	1		a (203	2	Z	EITHER								he	6	3	703
BARN-ROOF-POINT	0		a (1 a	2	2	EITHER	1	1	711					œl	9	3	703
BOULDER	1		a (16	0	1	PRIMARY								suade	6	9	4907
BRIDGE	2		a (1 a	3	1	PRIMARY								enane	7	2	1903
BRIDGE NAME	2		a (1 a	3	1	OPTIONAL				3	1 1			90X	8	2	1903
BRUSH	1		2 (J 2	0	1	PRIMARY								ne	S	6	5204
BUILDING-AREA	- 2		a (3 3	9	Z	PRIMARY						Y	8	90 H	10	3	702
BUILDING-ROOF-LINE	3		a (209	9	2	EITHER								he	11	3	702
BUILDING-ROOF-POINT	0		a (3 O	9	Z	EITHER	1	1	711A					02 I	12	3	702
BUILDING-RUIN-AREA	d		a (1 8	6	1	PRIMARY						Y	8	so H	13	3	711
BUILDING-RUIN-ANNOTATION	4		a (3 3	6	1	OPTIONAL				3	1 1			B)X	14	3	711
BUILDING-UNDERCONSTRUC	1 1		2 (1 8	7	1	PRIMARY								shape	19	3	712
BUILDING-UNDERCONSTRUC			2 (3 8	7	1	OPTIONAL				3	1			83X	16	3	712
GANAL	1		a (1 1	8	1	PRIMARY								he	17	4	3911
CANAL-NAME	1		a (3 81	8	1	OPTIONAL				3	1			8X2	18	4	3911
CANAL-WATER-CENTRE-LINE	1		Z (209	8	1	OPTIONAL								he	15	4	3911
CANAL-LEFT-BANK	1		a (1 17	8	3	PRIMARY								he	20	4	3311
CANAL-RIGHT-BANK			3 (3 33	8	3	SECONDARY								he	21	4	3911
25ID ED-CANAL-NAME	1		a (1 49	8	3	OPTIONAL				3	1			8X2	22	4	3911
25IDED-CANAL-WATER-CENT	1		z (1 1	8	3	SECONDARY								he	23	4	3911
CATTLEGUARD	4		a (J 3	0	1	PRIMARY								shane	24	2	17 30
CEMETERYAREA			1 (1 8		1	PRIMARY								snane	29		104
CEMETERY-NAME	ē		a (i a	9	1	OPTIONAL				3	1			8X	26		104
CLIFF	-		1 (1 22	0	1	PRIMARY		-				-		he	27		49.09
CDAST/INF/DEEN/TE	- 1		1 0	1 66	10		PRIMARY		-						ine .	78		4301
COASTLINE DEF. NAME	- 1		1 0	1 65	10	1	OPTIONAL				,	1			E X	25		4301
DEELCONST. HIGH WATER IN			4 6	1 1	10		OPTIONAL		-						Inc	30	4	4301
COASTLINE INDEFINITE			2 0	1 81	11	1	PRIMARY		-				-		he	31	4	4302
COASTLINE IN DEE NAME			2 0	1 81	11	1	OPTIONAL		-						E YT	32	4	4302
INDER CONST. WEN WRITER (4 4	1 17		4	OPTIONAL		-				-		bio.	23		4101
Call TRIATER-AREA			1 0	1 18	12	i i	PRIMARY		-				-		chane	34		1051
CULTR/OTED OF SO NOME			1 0	1 10	17		OBTIONAL		-							70		1051
CULVERTUNE	2		1 1	1 8		1	PRIMARY		-				-		ine ine	36		30.15
CULVERTSYMPOL	- i			1 0			PRIMARY	76	7.6	CONVET			-			27		20.10
CULLEARTHWORK			1 1	1 39	, a	1	PRIMARY			was viti			-		ino.	35		17.18
Culture							DE HANDY		-				-					47.00
Deld of 50				1 1 10	13		BP ILLO PY		-				-		00.000	40		20.44
DAM C PECT	- 3			1 107	13	4	ORIDNA		-				-		bio bio	44		2011
Deld CRb / MieV				1 709	13		ORTIONAL		-				-		No.	43		2011
INTO CE STRUCTURE	- 3			1 7 74	12	4	OPTIONAL		-				-		hin .	43		2011
STAIRS				1 240	13		ORTIONAL		-				-		Pine Inco			2011
Dold Molds	- 2			1 4 70			OPTIONAL		-							40		2011
Dold - NG	2			1 170	13	4	BRIMERY		-				-		60.000	40		2011
Data C DECT	- 2			1 407			CONTRACT						-		winder.	47		20142
Della CRIMINA	- 3			1 1 22	14		OPTIONAL		-				-		Piece -			2012
Cartering - Inc. Hereit							OPTIONE.		-				-		Pite			2014
STAILS				1 240	14		OPTIONAL		-				-		Pic lao		- 1	2612
a mină	- 5			240	14		CPTION/MC									90		2612
Lanset - NARANE	- 5			1/6	14		OPTIONAL DIVISION		-		- 3	1			••X	51	4	2612
DITCH MATCH CONTRACTION				1 1	17	1	CREATING						-		10	52		3908
UT CH-WATCH-CENTRE-LINE					17		CHI CAME								P1%		- 1	3108
BOCK	10		u (0	1	PERMIT						-		wiane	54	- 4	1209
URIVEWWY- HWVEWENT	11		u (1 8	0	1	PRIMERY								ne	59	2	720
DRIVEWWY-CONCRETE	11		9 (209	0	1	PRIMARY								ne	56	2	721
UKIVEWWY-KOUGH	11		4 0	1 8	Q	1	PRIMARY								ne	57	2	7 22
UU MP-/AREA	12	1 I	u) (a) 8	18	11	PER IMPLEY								-140-C	98	. 3	107

Figure 2

Copyright © Safe Software Inc. 2007. All rights are reserved. Printed in Canada. FME is a registered trademark of Safe Software Inc. All other product names may be trademarks or registered trademarks of their respective owners.